Synthesis of poly(styrene-N-hydroxymethyl acrylamide) microspheres and their application in patterned photonic crystals

Author:

Zhang Yunxiao1ORCID,Han Pengshuai2,Ouyang Shenshen3,He Wenyu1,Chai Liqin2,Zhou Lan1,Shao Jianzhong2ORCID,Liu Guojin1

Affiliation:

1. Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou, China

2. Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou, China

3. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ning-bo, China

Abstract

In order to achieve bright and durable structural colors, the poly(styrene-N-hydroxymethyl acrylamide) nanospheres with self-crosslinking property were used as structural units to construct patterned photonic crystals. In this article, we thoroughly explore the effect of synthesis factors on particle sizes and monodispersity of poly(styrene-N-hydroxymethyl acrylamide) nanospheres, with the characterization of the performance of prepared poly(styrene-N-hydroxymethyl acrylamide) nanospheres. Then the color effects and durability of structural colors produced from poly(styrene-N-hydroxymethyl acrylamide) photonic crystals were characterized and evaluated. The results showed that the monodisperse poly(styrene-N-hydroxymethyl acrylamide) nanospheres with particle sizes ranging between about 200∼320 nm could be synthesized. The prepared poly(styrene-N-hydroxymethyl acrylamide) nanospheres exhibit typical core-shell structure, in which the hydrophobic polystyrene domain is mainly located on the core, and there is a thin shell mainly rich in hydrophilic Poly(N-hydroxymethyl acrylamide) covering the polystyrene core. Moreover, the poly(styrene-N-hydroxymethyl acrylamide) nanospheres have self-crosslinking properties, which could be confirmed by the thermogravimetric curve. Furthermore, the photonic crystals constructed by prepared poly(styrene-N-hydroxymethyl acrylamide) nanospheres still present vivid and durable structural colors after friction, bending, washing and soaking tests. Specifically, the patterned photonic crystals can be constructed on photo paper, plastic board and fabrics, and the resultant structural colors present significantly iridescent effects. The research results can provide strategic support for the practical application of photonic crystals with structural colors.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3