Effect of process and nozzle structural parameters on the wrapping quality of core-spun yarns produced on a modified vortex spinning system

Author:

Pei Zeguang12ORCID,Wang Xingbao1,Li Zhimin3,Xiao Lei12,Bai Tao12,Chen Ge12

Affiliation:

1. College of Mechanical Engineering, Donghua University, China

2. Engineering Research Center of Advanced Textile Machinery, Ministry of Education, China

3. College of Textiles, Donghua University, China

Abstract

Vortex core-spun yarn containing a metal wire has a broad application prospect owing to the combination of its fasciated structure, durability, comfort, and its electrical properties. In this paper, three-dimensional numerical simulations on the flow characteristics inside the nozzle of a modified vortex spinning system for producing core-spun yarns are carried out to investigate the effect of some process and nozzle structural parameters—the nozzle pressure, distance between nozzle inlet and spindle, and protrusion length of the filament feeding tube—on the flow field. Using a machine vision system, experiments are also conducted to investigate the effects of these parameters on the wrapping defects of the vortex core-spun yarns which are then analyzed based on the simulation results. The number of wrapping defects on the yarn greatly decreases as the nozzle pressure increases from 4 × 105 Pa to 5 × 105 Pa. As the distance between nozzle inlet and spindle increases, the number of wrapping defects on the yarn first decreases and then increases. The effect of protrusion length of the filament feeding tube is found to be insignificant. This experimental and numerical study can provide a feasible way for optimizing the quality of the core-spun yarn produced on the modified vortex spinning system and analyzing the mechanism of the effects of parameters.

Funder

Fundamental Research Fund for the Central Universities

Natural Science Foundation of Shanghai

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3