Transport properties of multi-layer fabric based on electrospun nanofiber mats as a breathable barrier textile material

Author:

Bagherzadeh Roohollah12,Latifi Masoud1,Najar Saeed Shaikhzadeh1,Tehran Mohammad Amani1,Gorji Mohsen3,Kong Lingxue2

Affiliation:

1. ATMT Research Institute, Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran.

2. Centre for Material and Fibre Innovation, ITRI, Deakin University, Waurn Ponds, VIC 3217, Australia.

3. Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Abstract

Layered fabric systems with an electrospun nanofiber web layered onto a sandwich of woven fabric were developed to examine the feasibility of developing breathable barrier textile materials. Some parameters of nanofiber mats, including the time of electrospinning and the polymer solution concentration, were designed to change and barrier properties of specimens were compared. Air permeability, water vapor transmission, and water repellency (Bundesmann and hydrostatic pressure tests) were assessed as indications of comfort and barrier performance of different samples. These performances of layered nanofiber fabrics were compared with a well-known water repellent breathable multi-layered fabric (Gortex). Multi-layered electrospun nanofiber mats equipped fabric (MENMEF) showed better performance in windproof property than Gortex fabric. Also, water vapor permeability of MENMEF was in a range of normal woven sport and work clothing. Comparisons of barrier properties of MENMEF and the currently available PTFE coated materials showed that, those properties could be achieved by layered fabric systems with electrospun nanofiber mats.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3