Affiliation:
1. School of Fashion Engineering, Shanghai University of Engineering Science, China
Abstract
The Taylor cone formed at the tip of the syringe used for delivering the solution plays an important role in jet formation. This study presents a novel multiphysics model to simulate the dynamic processes occurring within the cone jet from a flat spinneret and a single needle spinneret. The electric field, volume fraction and velocity magnitude of the polymer jet ejecting from two different kinds of spinnerets are calculated by the multiphysics simulation model. A high-speed camera is employed to capture the jet formed by the Taylor cone. The simulation results are validated by comparison with experimental results. It is found that the spinneret configuration could be the key factor in determining cone morphology in the electrospinning process.
Funder
Talents Action Program of Shanghai University of Engineering Science
Scientific Research Staring Foundation of Shanghai University of Engineering Science
National Natural Science Foundation of China
Subject
Polymers and Plastics,Chemical Engineering (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献