Affiliation:
1. The University of Texas at Austin, USA
Abstract
The porosity and high surface-area-to-volume ratio of nanofiber membranes offer potential for diverse applications, including high-efficiency filters and barrier fabrics for use in protective textiles. The objective of this research is to examine the morphology and pore size distribution of nanofiber membranes prepared using two spinning methods, that is, electrospinning and forcespinning. The results indicate that fiber diameter is impacted by spinning solution viscosity in an analogous way for both spinning methods. Higher concentrations resulted in larger fiber diameters in both electrospun and forcespun membranes. Fiber diameter and membrane areal density were found to significantly impact membrane pore size distribution. A theoretical model was used to describe pore size variation and was found to agree with the empirical patterns in the case of electrospun membranes.
Subject
Polymers and Plastics,Chemical Engineering (miscellaneous)
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献