Thermodynamic properties of cotton dyeing with indigo dyes in non-aqueous media of liquid paraffin and D5

Author:

Fan Jie1,Shao Min1,Miao Junhua1,Ma Junran1,Hu Mingan2,An Yuan1,Shao Jianzhong1ORCID

Affiliation:

1. Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, China

2. Haining Green-Guard Textile Sci-Tech Co. Ltd, Jiaxing, China

Abstract

On the basis of investigation into the dyeing equilibrium of cotton fibers with indigo dyes in decamethylcyclopentasiloxane (D5), liquid paraffin and water, the thermodynamic properties of cotton dyeing with indigo dyes in non-aqueous medium systems were studied in comparison with aqueous dyeing. The main works involved are as follows: firstly, the adsorption isotherms were created; then, the three theoretical adsorption models of Nernst, Langmuir and Freundlich were used to fit the adsorption isotherms created; finally, the thermodynamic parameters were calculated. The results showed that the adsorption isotherms were all in line with the Freundlich model. The order of dyeing affinity was in the sequence: liquid paraffin > D5 > water. The dyeing entropy in the three media showed positive values, which is mainly attributed to the adsorption of both indigo-leuco and water onto cotton fibers, thus reducing the ice-like structure formed among the water molecules in the dyeing system and the hydrophobic bonding structure formed among the non-aqueous medium molecules, then leading to an increase in the system disorder. The dyeing heat in the three media also showed positive values, due mainly to the absorption of thermal energy to “melt” the ice-like structure and to “break” the hydrophobic bonding structure. These dyeing thermodynamic properties are conducive to understanding and interpreting the dyeing performance and behavior of indigo dyes in non-aqueous dyeing systems.

Funder

National Key Research and Development Program of China

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3