FabricGAN: an enhanced generative adversarial network for data augmentation and improved fabric defect detection

Author:

Xu Yiqin123,Zhi Chao123ORCID,Wang Shuai23,Chen Jianglong23,Sun Runjun23,Dong Zijing23ORCID,Yu Lingjie23ORCID

Affiliation:

1. Yiqin Xu and Chao Zhi are Co-first authors.

2. School of Textile Science and Engineering, Xi’an Polytechnic University, China

3. State Key Laboratory of Intelligent Textile Material and Products, Xi’an Polytechnic University, China

Abstract

When deep learning is applied to intelligent textile defect detection, the insufficient training data may result in low accuracy and poor adaptability of varying defect types of the trained defect model. To address the above problem, an enhanced generative adversarial network for data augmentation and improved fabric defect detection was proposed. Firstly, the dataset is preprocessed to generate defect localization maps, which are combined with non-defective fabric images and input into the network for training, which helps to better extract defect features. In addition, by utilizing a Double U-Net network, the fusion of defects and textures is enhanced. Next, random noise and the multi-head attention mechanism are introduced to improve the model’s generalization ability and enhance the realism and diversity of the generated images. Finally, we merge the newly generated defect image data with the original defect data to realize the data enhancement. Comparison experiments were performed using the YOLOv3 object detection model on the training data before and after data enhancement. The experimental results show a significant accuracy improvement for five defect types – float, line, knot, hole, and stain – increasing from 41%, 44%, 38%, 42%, and 41% to 78%, 76%, 72%, 67%, and 64%, respectively.

Funder

Science and Technology Guiding Project of China National Textile and Apparel Council

Young Talent Fund of Xi'an Association for Science and Technology

Scientific Research Program Funded by Shaanxi Provincial Education Department

Young Talent Fund of Association for Science and Technology in Shaanxi,China

Innovation Capability Support Program of Shaanxi

National Natural Science Foundation of China

Natural Science Basic Research Program of Shaanxi Province

Key Research and Development Projects of Shaanxi Province

Outstanding Young Talents Support Plan of Shaanxi Universities

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3