Study of thermal-sensitive alginate-Ca2+/poly(N-isopropylacrylamide) hydrogels supported by cotton fabric for wound dressing applications

Author:

Li Bing123,Li Dapeng4,Yang Yanni123,Zhang Lu123,Xu Ke123,Wang Jiping123

Affiliation:

1. Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, PR China

2. Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, PR China

3. Silk Institute, College of Materials and Textiles, Zhejiang Sci-Tech University, PR China

4. Department of Bioengineering, University of Massachusetts Dartmouth, USA

Abstract

In this study, direct deposition, 1,2,3,4-butanetetracarboxylic acid (BTCA) crosslinking, chelating and ultraviolet (UV) photo-grafting methods were employed to bond alginate-Ca2+/poly( N-isopropylacrylamide) (PNIPAAm) interpenetrating network hydrogel onto cotton fabric surface for wound dressing applications. Infrared spectroscopy confirmed the presence of alginate-Ca2+/PNIPAAm hydrogels on the cotton fabrics. Scanning electron microscopy was used to investigate surface and cross-section morphologies. Differential scanning calorimetry and three-dimensional video microscopy indicated that fabric-supported hydrogels maintained the thermal-sensitive property with a lower critical solution temperature (LCST) of around 34–35℃. The results of water vapor permeation revealed that the water vapor transmission rate at 37℃ was significantly higher than that at 25℃ for the shrink and collapse of the hydrogels above the LCST. Moreover, the breaking stress of the fabric-supported hydrogels was similar to that of the original cotton fabrics, but much larger than the hydrogels by themselves. The UV photo-grafting provided the strongest peel strength, followed by the BTCA crosslinking, the chelating and the direct deposition method. The cotton fabric-supported alginate-Ca2+/PNIPAAm hydrogels were stiffer than the original cotton fabric due to the high glass transition temperature of PNIPAAm (about 140℃). The in vitro drug release experiment confirmed that the cumulative release amount was much higher at around 37℃ (above the LCST) than at 25℃ (below the LCST). This showed that the fabric-supported thermal-sensitive hydrogels had functions of keeping the wound area breathable and comfortable, and provided controlled drug release with good mechanical properties, indicating a great potential and significance for wound dressing applications.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3