A new thermocouple technique for the precise measurement of in-plane capillary water flow within fabrics

Author:

Zhu Chunhong1,Takatera Masayuki2

Affiliation:

1. Interdisciplinary Graduate School of Science and Technology, Shinshu University, Japan

2. Faculty of Textile Science and Technology, Shinshu University, Japan

Abstract

A new method was proposed for the measurement of in-plane capillary water flow within fabrics automatically. The method was based on the use of thermocouples to measure temperature changes as the fabric absorbed water. The wicking length of three different woven fabrics and two knitted fabrics in the warp, weft and 45° bias directions was measured using this technique. The wicking length was found to have a linear relationship with the square root of time, in agreement with the Washburn equation. Comparing the results with the data acquired using the horizontal Byreck method, the thermocouple technique was found to be suitable for the precise measurement of in-plane capillary water flow through fabrics automatically. Moreover, based on this method, the feasibility of estimating the water contents of fabrics from temperature differences generated during the flow process was also investigated. We found that it was possible to estimate the water content of a fabric, provided the moisture level is below the critical water content at equilibrium. This can be used to estimate the water content of fabric when it is worn.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3