Modeling the consumption of sewing thread for stitch class 301 through image analysis by using Fourier series

Author:

Javed Zafar1,Ahmad Fayyaz2,Khan Qammar3,Naeem M Salman1,Javaid M Usman1,Jabbar Abdul45,Hassan Zameerul6,Karahan Mehmet7ORCID

Affiliation:

1. School of Arts and Design, National Textile University, Pakistan

2. School of Science, National Textile University, Pakistan

3. Department of Textile &Clothing, National Textile University, Pakistan

4. School of Engineering and Technology, National Textile University, Pakistan

5. School of Design, University of Leeds, UK

6. Department of Textiles, Faculty of Engineering, Balochistan University of Information Technology, Engineering and Management Sciences, Pakistan

7. Uludag University Vocational School of Technical Sciences, Turkey

Abstract

This research work aims at modeling the sewing thread consumption for stitch class 301 through image analysis by using Fourier series. A mathematical model was developed by using the geometry of stitch class 301 for calculating sewing thread consumption. The modeling of stitch class 301 was conducted by changing the stitch density and thickness of the stitched fabric. The stitch density was adjusted by varying the stitch length (2, 3 and 4 mm) and the thickness of stitched fabric (2, 3 and 4 plies of fabric).The interlacement of sewing thread between the needle and bobbin was used for the measurement of arc length of one stitch. The total consumption of sewing thread was determined by multiplying the arc length by 4. The developed model was verified by using nine different stitched samples for comparing the predicted and measured values of sewing thread consumption. This model predicted the sewing thread consumption with 95% accuracy. Error percentages were also calculated for determining the major influencing factors that affected the sewing thread consumption. The proposed model can effectively be employed in garment industries for determining sewing thread consumption.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3