Structures and Properties of Wet Spun Thermo-Regulated Polyacrylonitrile-Vinylidene Chloride Fibers

Author:

Zhang Xing-Xiang1,Wang Xue-Chen2,Tao Xiao-Ming3,Yick Kit-Lun3

Affiliation:

1. Institute of Functional Fibers, Tianjin Polytechnic University, Tianjin 300160, China,

2. Institute of Functional Fibers, Tianjin Polytechnic University, Tianjin 300160, China

3. Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China

Abstract

Thermo-regulated polyacrylonitrilevinylidene chloride (PAN/VDC) fibers containing 4-40 wt.% of micro phase-change materials (microPCMs) were wet-spun. In this study, fibers containing less than 30 wt.% of microencapsulated n-octadecane were spun smoothly. The structures and properties of the fibers were investigated by using Fourier transform infrared, scanning electron microscopy, differential scanning calorimetry, wide-angle X-ray diffraction, dynamic mechanical analysis and thermogravimetric analysis, etc. The microcapsules were intact and evenly distributed inside the polymer matrix. The tensile strengths of the fibers with titers in the range of 1.9 to 10.9 dtex were 0.7 to 2.0 cN/dtex. The elongation of the fibers was approximately 7%. The heat-absorbing and heat-evolving temperatures of the fibers increased slightly with the increase of the content of microPCMs. The enthalpy of melting or enthalpy of crystallization of the fiber containing 30 wt.% of microPCMs was approximately 30 J/g, and the enthalpy of melting or enthalpy of crystallization increased steadily as the content of microPCMs increased. The modulus of the fiber decreased with the increase in the amount of microPCMs in the fiber. The glass transition temperature of the fiber was 89-108°C which decreased with the increase of the content of microPCMs, and the melting and decomposing temperatures of the fiber were approximately 190 and 220°C, respectively. The fibers had a limited oxygen index value that was higher than 25% and were permanently in flame retardation.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3