Affiliation:
1. College of Textile Science and Engineering, Jiangnan University, China
Abstract
Due to the potential value in many areas, such as e-commerce and inventory management, fabric image retrieval, which is a special case of content-based image retrieval, has recently become a research hotspot. As a major category of textile fabrics, patterned fabrics have a diverse and complex appearance, making the retrieval task more challenging. To address this situation, this paper proposes a novel approach for patterned fabric based on the non-subsampled contourlet transform (NSCT) feature descriptor and relevance feedback technique. To integrate the color information into the NSCT feature descriptor, we extract the feature of patterned fabric images in HSV color space. An outlier rejection-based parametric relevance feedback algorithm is employed to adjust the similarity matrix to improve the retrieval results. The experimental results not only show the effectiveness of the proposed approach but also demonstrate that it can significantly improve the performance of the retrieval system compared to other state-of-the-art algorithms.
Funder
National Key R&D Program of China
National Natural Science Foundation of China
Postgraduate Research & Practice Innovation Program of Jiangnan University
Subject
Polymers and Plastics,Chemical Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献