Analysis of the magnetic field and electromagnetic force of a non-striking weft insertion system for super broad-width looms, based on an electromagnetic launcher

Author:

Qiao Xu12ORCID,Shunqi Mei12,Xiaoyu Yan12,Islam Md Mazharul12,Zhen Chen12,Shaojun Wang13,Zhiming Zhang12

Affiliation:

1. School of Mechanical Engineering and Automation, Wuhan Textile University, China

2. Hubei Digital Textile Equipment Key Laboratory, China

3. Southeast Missouri State University, USA

Abstract

Weft insertion based on electromagnetic launch technology is a novel and very promising approach for super broad-width (6–12 m) (SBW) looms. There are considerable challenges involved in designing such a system, including analyzing the electromagnetic field while incorporating the effect of a clip weft device, and accurately calculating the electromagnetic and motion parameters of the weft insertion mechanism. In this study, an electromagnetic launch, non-striking weft insertion method for an SBW loom is proposed. The electromagnetic field is analyzed with the finite element method and includes the effect of a clip weft device. Simulation of the motion, analysis of the maximum flight speed of the clip weft device and the work done by electromagnetic force are presented. We also describe an experimental model for electromagnetic launch weft insertion and calculate the electromagnetic force required for weft insertion, using analytical methods and numerical finite element methods. Comparison of the results with measured values shows that this electromagnetic launch weft insertion system has good flexibility. In addition, the weft insertion speed required for different width looms can be obtained by changing the current of the coil or the coil stage number of the launching system.

Funder

China National Textile And Apparel Council Project

National Natural Science Foundation of China

Key Laboratory Project of Hubei Province

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3