Affiliation:
1. Institute of Tribology Research, Southwest Jiaotong University, China
2. Center for Surface Engineering and Tribology, Northwestern University, USA
Abstract
This paper reports a numerical approach, based on a nonlinear particle spring model and a collision detection procedure, to simulate the shape of a draped cloth, or a flexible sheet, together with a simple but precise three-dimensional shape reconstruction method for real fabric applications. The latter is utilized to verify the accuracy of the proposed drape simulation model. The drapes of four types of fabric on a cylinder are simulated, and the results are compared with the reconstructed shapes of the same cloths; the results show an excellent agreement. The simulation model is further used to calculate the shapes of skirts of different materials and sizes, and the effects of fabric parameters, length, and waist size are numerically investigated. The results reveal that under the same conditions, the behaviors of different materials are affected by their properties in terms of stiffness coefficients of the springs. The silk skirt looks soft and fluttering; the outer contour curve of the skirt simulated for the polyester fabric appears relatively smoother, but the shape of the cotton skirt seems to be stiffer. The skirt made of fabric of 10% cotton and 90% polyester combines the characteristics of the polyester and cotton fabric.
Funder
National Natural Science Foundation of China
Subject
Polymers and Plastics,Chemical Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献