Design of warp knitting electronic shogging system based on mixed-velocity planning curve

Author:

Zheng Baoping1ORCID,Jiang Gaoming1ORCID,Dong Zhijia1,Liu Haisang1ORCID

Affiliation:

1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, China

Abstract

To realize high-speed running of a warp knitting machine, the shogging motion should not only meet the requirement of high dynamic response but should also satisfy high positioning accuracy. Due to the large location disturbance and the dynamic response delay in the interpolation method or the single velocity planning curve method, an electronic shogging system for a warp knitting machine based on the mixed-velocity planning curve is proposed in the present study. Through the analysis of the shogging motion combined with the knitted structure, the optimal resolution of the instruction signal is calculated, which is 725 pulses for one needle step, and the velocity loop bandwidth of the servo driver is optimized. In addition, the motor with a load inertia ratio close to 1 is also selected. Analysis of the shogging motion vibration curve confirms that the shogging motion has advantages of high positioning accuracy and high dynamic response under the mixed-velocity planning curve. The response performance with the mixed curve is 12.5% higher than that with the quintic polynomial, and the positioning accuracy of the mixed curve is 26% higher than that with uniform acceleration–deceleration curve.

Funder

supported by“the Fundamental Research Funds for the Central Universities”

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3