Surface modification of aramid fibers by atmospheric pressure plasma-enhanced vapor deposition

Author:

Chu Yanyan1,Chen Xiaogang1,Sheel David W2,Hodgkinson John L2

Affiliation:

1. The University of Manchester, UK

2. Salford University, UK

Abstract

Recent research results have indicated positive influences of inter-yarn friction on ballistic performance of woven fabrics and panels made from such fibers. The current investigation explores the effect of coating by means of atmospheric pressure plasma-enhanced vapor deposition with organic chemical (CH3)2Cl2Si on the inter-yarn friction. The scanning electron microscopy observations indicated that as the treatment time increases, more particles have been deposited on the surface of the fibers. The Fourier transform infrared spectra supported the existence of Si-O-Si vibration, which can be attributed to the chemical deposition. Energy-dispersive X-ray analysis further supported the deposition of the chemical compound. Experiments were carried out to evaluate the coefficients of static and kinetic frictions between the yarns and the results showed that the inter-yarn coefficient of static friction was increased from 0.1617 to 0.2969 and that of the kinetic friction increased from 0.1554 to 0.2436, as the treatment time increased to 4 minutes. In addition, there is evidence that the mechanical properties of the treated yarns were not negatively affected by the treatment.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3