Advent of Greige Cotton Non-Wovens Made using a Hydro-Entanglement Process

Author:

Sawhney A.P.S.1,Condon Brian2,Reynolds Michael2,Slopek Ryan2,Hui David3

Affiliation:

1. Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, New Orleans, LA 70124, U.S.A.,

2. Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, New Orleans, LA 70124, U.S.A.

3. University of New Orleans, Mechanical Engineering Department, New Orleans, LA 70148, U.S.A.

Abstract

Using greige (scour/bleach-less) cotton, non-woven fabrics have been successfully produced by adopting conventional fiber opening, cleaning and (modified) carding machines followed by cross-lapping, pre/light needling, and hydro-entanglement (HE) on modern commercial machinery and equipment. Using standard test methods and procedures, the fabrics were evaluated for their weight, thickness, burst strength, tensile and tear failures in both machine (MD) and cross (CD) directions, and absorbency. Dimensional characteristics of the fabrics were determined before and after an ordinary wash. Microscopic examinations of the fiber/fabric surfaces before and after various conditions/degrees of H-E were conducted. Results of these preliminary research investigations have shown that a run-of-the-mill greige cotton, processed on a conventional cotton cleaning and preparatory system, can indeed be efficiently processed on the downstream non-wovens production equipment. In addition, it has been shown that different processing conditions, especially the high-pressure (HP) hydraulic energy of the H-E system, have a considerable influence on properties of the fabrics produced. At the nominal fabric production rates deployed in the research trials, pressure greater than 100 bar (at the system’s two HP jet-heads) produces a fabric that is partially hydrophilic: a desirable attribute for many end-use applications of cotton non-wovens. Based on a previous in-house investigation, it seems that the HP (hydraulic energy) at certain levels partly removes some of the greige cotton fiber’s natural hydrophobic defensive membrane (outer-surface barrier) of heavy hydrocarbons, such as waxes, pectins, etc., thus making the fiber/fabric partially hydrophilic. Further, it has been observed that the high water pressures (HP), under otherwise similar processing conditions, tend to fracture some cotton fibers into tiny fibrils, as evidenced by scanning electron microscopy (SEM) images. These ruptured fibers, by way of exposing their inner (hydrophilic) walls, could also partly contribute to the fabric’s improved absorbency at elevated hydraulic energy levels. Furthermore, a rather unique fabric structure, comprising certain well-defined fibrous “strands and channels,” observed at elevated (HP) pressures is also deemed to partly contribute to the greige fabric’s improved wickability.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3