Affiliation:
1. Fiber and Polymer Science, North Carolina State University, Raleigh, North Carolina 27695, U.S.A.
2. Department of Civil, Construction & Environmental Engineering. North Carolina State University, Raleigh, North Carolina 27695, U.S.A.
Abstract
The influence of fibers on the fatigue cracking resistance of asphalt concrete is investigated using fracture energy. Nylon, a popular facing yarn of carpets, is used for the actual recycled carpet fibers in asphalt pavement. The experimental program is designed with two phases: the single fiber pull-out test and the indirect tension strength test. Through pull-out tests of 15-denier single nylon fibers, the critical fiber embedded length is determined to be 9.2 mm. As for indirect tension strength tests, samples of asphalt concrete mixed with nylon fibers of two lengths, 6 and 12 mm, based on results of the pull-out tests (critical embedded length) and three volume fractions, 0.25, 0.5, and 1%, are prepared and tested. Asphalt concrete samples fabricated with fibers of 1% and 12 mm results in 85% higher fracture energy than non-reinforced specimens, showing improved fatigue cracking resistance. Although an optimized asphalt mix design with fibers has not been developed for this study, the increased fracture energy represents a potential for improving asphalt fatigue life, which may be facilitated through the use of recycled carpet fibers.
Subject
Polymers and Plastics,Chemical Engineering (miscellaneous)
Cited by
127 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献