Time-temperature-dependent mechanical durability analysis of short (glass) fiber-reinforced polyethylene terephthalate injection molding composites with weld line

Author:

Miah Md Sohag1ORCID,Yu Jianyong1,Yang Yang1,Pang You1,Wang Xianchen1,Yu Lichao2ORCID,Yang Yuqiu1

Affiliation:

1. Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, P.R. China

2. College of Material and Textile Engineering, Jiaxing University, Jiaxing, China

Abstract

The mechanical property and long-term durable life of short fiber composites are inevitably subjected to internal and external influences during molding and afterwards, such as weld, temperature, stress type, and so on. This study was concerned with the influence of weld on mechanical properties of short glass fiber reinforced polyethylene terephthalate injection molding composites and the investigation of their tensile properties at different temperatures and tensile speeds with varying fiber contents. The weld strength was about 50–60% less than the tensile strength at different temperatures and tensile speeds. As the fiber content increased from 15 wt% to 30 wt%, the weld strength was reduced by 10%. The tensile and weld strength were in general inversely proportional to the temperature and linearly proportional to the tensile speed. Tensile modulus showed an inverse association with temperature and a mostly non-linear relation with the tensile speed. The weld line integrity in tensile strength was independent of tensile speed and temperature below the glass transition temperature level. Morphology evaluation testified that the higher test speed emanated better fracture surface fiber–resin adhesion properties with comparatively brittle fracture tensile behavior. The time-temperature superposition principle was applied to find the scope of long-term durability, lifetime prediction and to describe the viscoelastic properties of the welded glass fiber reinforced polyethylene terephthalate composites. An Arrhenius type of shift factor was obtained to fit the tensile strength data which was independent of the fiber contents of the welds. The experimental results can provide a valuable reference for the design and manufacture of short fiber-reinforced composites in long-term durability applications.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3