Affiliation:
1. Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong
Abstract
Negative stiffness refers to a negative ratio of the force to the displacement in a deformed material system. It can be very useful in the design and fabrication of vibration isolation systems. In this study, a new kind of weft-knitted spacer structure that can achieve negative stiffness under compression was specially developed by using elastic yarn to knit the outer layers of spacer structure. Twelve fabric samples were knitted on an electronic flat knitting machine with three different linking distances and four diameters of spacer monofilaments. The compression tests were conducted to verify the negative stiffness effect of the fabrics after a steaming treatment. The results obtained have shown that the negative stiffness effect can be obtained for weft-knitted spacer fabrics in a special range of compression displacement if suitable fabric structure and fiber materials are used, and the decrease of the linking distance of spacer monofilaments can enhance the negative stiffness effect. It is expected that this study could provide useful information in the design and fabrication of spacer fabrics for vibration isolation.
Subject
Polymers and Plastics,Chemical Engineering (miscellaneous)
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献