Smart control of cotton fabric comfort by cross-linking thermo-responsive poly(2-(2-methoxyethoxy) ethoxyethyl methacrylate-co-ethylene glycol methacrylate)

Author:

Chen Yangyi1,An Jie1,Zhong Qi1,Müller-Buschbaum Peter2,Wang Jiping1

Affiliation:

1. Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, National Base for International Science and Technology Cooperation in Textiles and Consumer-Goods Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, PR China

2. Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany

Abstract

The smart control of cotton fabric comfort by cross-linking thermo-responsive random copolymer is investigated. The monomers 2-(2-methoxyethoxy) ethoxyethyl methacrylate (MEO2MA) and ethylene glycol methacrylate (EGMA) with a molar ratio of 17:3 are selected to synthesize the thermo-responsive random copolymer poly(2-(2-methoxyethoxy) ethoxyethyl methacrylate- co-ethylene glycol methacrylate), abbreviated as P(MEO2MA- co-EGMA). By using citric acid as a cross-linking agent, the obtained P(MEO2MA- co-EGMA) is successfully immobilized onto cotton fabrics. Smart control is achieved from the thermo-responsive behavior of the copolymer. Cross-linked P(MEO2MA- co-EGMA) will collapse when the ambient temperature exceeds its transition temperature. Therefore, the formerly compact P(MEO2MA- co-EGMA) layer will switch to a porous structure, and the air/moisture permeability of the textiles is enhanced. As the comfort of the textiles is closely related to the air/moisture permeability, a smart control of the cotton fabric comfort can be realized. In addition, the softness of cotton fabrics with and without thermo-responsive polymers does not show a prominent change, even when the applied solution concentration is as high as 16% (wt%). On the contrary, the stiffness of the cotton fabric coated with poly( N-isopropylacrylamide) (PNIPAM) is significantly higher than the original cotton fabric, indicating that homo PNIPAM is less suitable for textiles used in daily lives. Moreover, the whiteness and mechanical properties are studied and stay unchanged after cross-linking. As a consequence, the introduction of P(MEO2MA- co-EGMA) into textiles can provide textiles with smart control of cotton comfort, and it will not influence the wearabilities of the textiles.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3