Transplanar and in-plane wicking effects in sock materials under pressure

Author:

Rossi Rene M1,Stämpfli Rolf2,Psikuta Agnes2,Rechsteiner Ivo2,Brühwiler Paul A2

Affiliation:

1. EMPA — Swiss Federal Laboratories for Materials Science and Technology, St Gallen, Switzerland,

2. EMPA — Swiss Federal Laboratories for Materials Science and Technology, St Gallen, Switzerland

Abstract

The moisture transfer and absorption properties of fabrics play an important role in the evaluation of the overall wear comfort of the textile. The location of moisture in the textile influences the skin wetness as well as the skin/textile friction process. In this study, we used X-ray tomography to analyze the transplanar and in-plane water transport in different sock materials when two defined pressures were applied to the inner side by means of an adjustable screw. The materials used were polyamide, polypropylene and wool, and had very distinct hydrophilic/hydrophobic and hygroscopic properties. The in-plane wicking effect showed a clear time dependency for the polyamide and wool samples, while the spreading of the polypropylene samples was very scattered. This effect was generally larger in the outer side of the sock than in the inner side, showing a clear tendency of these socks to wick the moisture away from the skin. Applying a pressure generally increased the in-plane water transport, but it affected the water distribution throughout the thickness of the sock for the wool samples, as more water remained in the inner half. The transplanar wicking effect was the most efficient with the polypropylene sock under the high pressure condition, but with the low pressure, this sock was not able to absorb all the moisture and a small quantity of water remained at its inner surface. X-ray tomography was shown to be a powerful tool to analyze not only the water distribution in static conditions, but also the transient 3-dimensional water transport.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3