Modeling and analysis of the equivalent convex mandrel of the three-dimensional braiding carbon fiber composite robotic arm

Author:

Meng Zhuo1,Zhang Rongtao1ORCID,Cai Gaowei1ORCID,Zhang Yujing1ORCID

Affiliation:

1. College of Mechanical Engineering, Donghua University, China

Abstract

The third robotic arm (drive housing) of a six-axis industrial robot often has a vertical inwardly concave surface to facilitate the installation of spatially vertical drive motors. With the inwardly concave surface of the robotic arm it is difficult to realize three-dimensional (3D) braiding directly, and based on this problem, an equivalent convex mandrel is added to the concave mandrel. The mathematical model of the concave mandrel is established, and the mathematical expression of the concave mandrel is obtained. In any cross-section perpendicular to the x-axis, the equivalent outwardly convex cross-sectional line is obtained according to the condition that the length of the outwardly convex and concave mandrel cross-sectional line is equal. All outwardly convex cross-sectional lines form a smooth surface of the equivalent convex mandrel. By the numerical calculation method, the braiding trajectory and the downward pressure trajectory are predicted for various take-up speeds. The length error of the braiding trajectory and the downward pressure trajectory are within 5%, which verifies the accuracy of the convex mandrel. The variation pattern of the braiding angle is smooth, verifying the braidability of the convex mandrel. The experimental results show that the outwardly convex carbon fiber fabric can be pressed down to fit the surface of the concave mandrel. Therefore, a carbon fiber composite arm with an inwardly concave surface can be manufactured by 3D braiding with the addition of an equivalent convex mandrel.

Funder

National Natural Science Foundation of China

key technical equipment project of National Development and Reform Commission

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3