The effect of laser engraving on aluminum foil-laminated denim fabric

Author:

Jiang Shou Xiang1,Yuan Guoxiang1,Huang Jingjing1,Peng Qingxin1,Liu Yan2

Affiliation:

1. Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China

2. Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China

Abstract

In this paper, a developed textile design method combining laser engraving and foil lamination was explored. With the foil laminating, the surface of denim fabric shows shinning effect. After that, the foil-laminated denim samples were treated with laser engraving by adjusting the parameters, including resolution (dots per inch, dpi) at 20, 30, 40 and 50 dpi and the pixel time (microsecond, μs) at 120 and 180 μs to melt and evaporate the aluminum foil and some surface fibers. The properties of the laser-engraved foil-laminated denim fabric, including weight, tearing strength, air resistance, surface observation, color appearance, colorfastness and abrasion resistance, and some low-stress mechanical properties, were investigated. The experimental results revealed that the changes in these properties are mainly related to the melted and evaporated surface laminated aluminum foil and different sizes of cracks, wrinkles and pores formed on the fiber surface with the increment of laser energy applied. This study also revealed the potential of pattern creation with different values and reflective appearance for the embellishment of denim fabric combining the aluminum foil laminating method through the laser engraving process. With lower resolutions, engraved vague patterns with small laser beam dots can be achieved. While the treatment resolution increased, clear patterns could be performed. Based on the same resolution, the higher pixel time can export more energy, which makes the pattern look more clearly. This design approach opens up new possibilities for metallic denim fabric design without any chemicals used.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3