Structural design and characterization of highly elastic woven fabric containing helical auxetic yarns

Author:

Chen Junli1ORCID,Du Zhaoqun12,Li Tianyuan2

Affiliation:

1. Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China

2. Key Lab for Sport Shoes Upper Materials of Fujian Province (Fujian Huafeng New Material Co., Ltd.), Putian 351144, China

Abstract

Auxetic textiles have been the focus of much attention due to their great promise for advanced protective clothing, flexible energy harvest devices, and functional textiles. Herein, plain fabric, basket fabric, and a derivative weave with the warp and weft yarns arrangement in a series of zigzags were prepared by incorporating different initial wrap density helical auxetic yarns in the weft direction using a commercial semi-automatic loom. The derivative weave using HAYs with a 150 m−1 initial wrap density as the weft yarn not only possesses superior auxetic behavior but also has good performance in strength and elasticity—essential properties useful for textile daily application. This fabric exhibits a high auxetic effect ( ν = −0.585), low elastic deformation (total deformation of 8.4% at 20% strain), excellent flexibility, and high break load. Moreover, by taking account of the key geometric parameters, a systematic discussion of the fabrics has been completed to evaluate the effect on the auxetic behavior; this clarified that changing the fabric structure and initial wrap density of a HAY is an effective strategy to tailor auxetic behavior without compromising the intrinsic properties of components. On the basis of our research, auxetic textiles can be considered a promising candidate for next-generation smart textiles and advanced functional textiles.

Funder

the Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University

the National Key Research and Development Program of China

the Fundamental Research Funds for the Central Universities

the Open Project Program of Key Lab for Sport Shoes Upper Materials of Fujian Province

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3