Sericin–copper-functionalized silk fabrics for enhanced ultraviolet protection and antibacterial properties using response surface methodology

Author:

Chitichotpanya Pisutsaran1,Pisitsak Penwisa1,Chitichotpanya Chayanisa2

Affiliation:

1. Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Thailand

2. Department of Chemistry, Faculty of Science, Mahidol University, Thailand

Abstract

This study investigated the enhancement of the ultraviolet (UV) protection and antibacterial properties of functionalized silk fabrics using a simple, inexpensive and environmental friendly approach. We demonstrated the in situ synthesis of copper nanoparticles (CuNPs) in a silk sericin (SS) matrix, using ascorbic acid as both a reducing agent and antioxidant. Development and optimization was achieved using a central composite design (CCD) in conjunction with the response surface methodology (RSM). The goal was to identify the concentrations of CuSO4 and SS that produced the optimal balance between UV protection and antibacterial activity, when tested against Escherichia coli and Staphylococcus aureus. The SS-CuNP bio-nanocomposites were characterized using scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. Statistical analyses indicated that an empirical second-order polynomial could accurately describe the UV protective factor, % reduction of S. aureus and % reduction of E. coli. The three-dimensional response surface graphs showed that the optimal concentrations of CuSO4 and SS were 2380 and 9500 ppm, respectively. To confirm that the levels identified using RSM were optimal in practice, performance evaluations were conducted. These investigated the durability and stability of UV protection and antibacterial activity after repeated washing cycles. The results suggest that these bio-nanocomposites have great potential for the multifunctionalization of silk fibers.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3