Reduction of weaving process-induced warp yarn damage and crimp of leno scrims based on coarse high-performance fibers

Author:

Weise D1ORCID,Vorhof M1,Brünler R1,Sennewald C1,Hoffmann G1,Cherif Ch1

Affiliation:

1. Technische Universität Dresden, Faculty of Mechanical Science and Engineering, Institute of Textile Machinery and High Performance Material Technology, 01062 Dresden, Germany

Abstract

In this paper, a constructively and technologically modified leno loom is introduced, which enables for the first time the low-damage processing of coarse high-performance fibers such as heavy tows with a non-crimped warp and weft yarn system to scrims. The modified leno loom requires just a single shedding element to achieve the vertical and horizontal offset motion of the weft yarn system for pattern generation. These modifications allow the low-damage processing of coarse high-performance fibers in the warp (straight yarn) and the weft yarn systems to create leno fabrics. These leno fabrics produced with the modified loom are investigated experimentally. By means of a three-factorial analysis of variance, the influence of tensile forces operating during processing and weft density on the crimp and the tensile strength of the straight yarn is examined. It is revealed that the property degradation (tensile/breaking strength) of the straight yarn caused by the weaving process is drastically reduced to 4.2% compared to an unprocessed roving. The determined crimp of the straight yarn affected by process-inherent tensile forces is 0.1% at its maximum. Thus, the presented leno-woven fabrics offer an enormous application potential for the reinforcement of brittle matrices, such as ceramic or concrete.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3