Novel robot-assisted angled multi-nozzle electrospinning set-up: computer simulation with experimental observation of electric field and fiber morphology

Author:

Park Chan Hee12,Pant Hem Raj13,Kim Cheol Sang14

Affiliation:

1. Department of Bio-nano System Engineering, Chonbuk National University, Jeonju, Jeonbuk 561–756, Republic of Korea

2. R&D Division, Automobile Parts and Mold Technology Innovation Center, Chonbuk National University, Jeonju, Jeonbuk 561–844, Republic of Korea

3. Department of Engineering Science and Humanities, Institute of Engineering, Pulchowk Campus, Tribhuvan University, Kathmandu, Nepal

4. Division of Mechanical Design Engineering, Chonbuk National University, Jeonju, Jeonbuk 561–756, Republic of Korea

Abstract

The development of a unique multi-nozzle electrospinning set-up and the study of the effect of an electric field on different types of spinneret are of major concern for broadening the industrial application of electrospinning. In the present paper we describe a novel robot-assisted angled multi-nozzle electrospinning set-up for the mass production of nanofibers and compare the computer simulation and the experimental results for the measurement of the electric field and fiber morphology. Three nozzle configurations, with a 90°, 100°, or 180° angle between the nozzles, and two operating conditions of the nozzle holder (fixed and movable), were studied to observe the electric field strength and its effect on fiber diameter. The results of the electrospinning experiments and electric field simulation demonstrated that the interference of the electric field was greatest with the 90° configuration and the nozzle holder held in a fixed position, whereas when the nozzle holder was movable it was greatest at 180°. The study was carried out using either two or eight nozzles, and the results showed that the electric field remained the same for a given configuration of the nozzle holder and the configuration angle, regardless of the number of nozzles. The study also showed that by controlling the movable nozzle holder and its angle the fiber diameter could be regulated without changing other material or processing parameters.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3