Affiliation:
1. Australian Future Fibres Research and Innovation Centre, Institute for Frontier Materials, Deakin University, Australia
2. School of Textile Science and Engineering, Wuhan Textile University, China
Abstract
Vascular implants have always been a key area of research in medical textiles. Knitted structures have been proven to be suitable for stent applications on the basis of their looped mesh geometry, structural flexibility and ease of manufacturing. However, there are biomechanical constraints of plain knit constructions that can result in clinical complications after implantation and hence cannot be ignored. This study reports a new segmented knit design inspired by structural metamerism observed in the body design of some invertebrate animals. Metamerism is the phenomenon of having a linear series of body segments fundamentally similar in structure, but assigned to perform different functions. It was hypothesized that utilization of this simple and yet effective biological design approach in stent construction could improve the degree of control for optimizing stent biomechanical properties. The proposed segmented stent was constructed by incorporating an elastic filament component into a polyethylene terephthalate knitted stent at specific intervals along its length, also known as the ‘Plating Technique’. This technique generates a structure with alternately arranged stiff and elastic knitted sections which equip the stent with vital structural support and volumetric compliance properties, respectively. The stent design parameters (filament diameter, loop length, segmentation plan) were optimized to achieve significantly better biomechanical performance (bending flexibility, compression resistance, volumetric expansion, longitudinal extensibility) than a plain knit stent.
Subject
Polymers and Plastics,Chemical Engineering (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献