CMYK channel modification to optimize optical yarn color mixing effects for multicolored Jacquard artwork reproduction

Author:

Kim Ken Ri1ORCID,Xin John H2,Zeng Lei3ORCID

Affiliation:

1. Loughborough Design School, Loughborough University, UK

2. Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong

3. School of Design and Creative Art, Loughborough University, UK

Abstract

Multicolored Jacquard artwork reproduction has been limited by the current setting of weaving machinery. Novel weaving applications have been introduced to overcome these current restrictions. The subtractive cyan, magenta, yellow and black system used for color printing has been important in optical yarn color mixing of Jacquard color production, because a wide scope of weave color production is possible with a small number of weft yarns. Previously, cyan, magenta, and yellow channels have been modified to resolve current restrictions in reproducing saturated black and secondary colors, but these experiments have not been successful. However, the generation of secondary color ranges is possible by mixing a pair of cyan, magenta, and yellow color yarns. In addition, it is feasible to control chroma levels of primary and secondary colors by mixing with a black yarn. Therefore, the potential of using four weft yarn colors is re-examined for the reproduction of multicolored artworks in relation to cost and production efficiency. Based on a mathematical morphology theory, cyan, magenta, and yellow color channels are altered in the use of image processing tools offered by Adobe Photoshop. A pair of the three color channels is combined under mathematical functions and they are modified through four steps. As a result, new cyan, magenta, and yellow color channels are created to optimize optical yarn color mixing effects. This study introduces details of the cyan, magenta, and yellow channel modification process and experiment results that examine the significance of the newly developed cyan, magenta, and yellow color channels.

Funder

Arts and Humanities Research Council

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3