Tri-layer gradient structured micro/nanofibrous nonwovens for high filtration efficiency and low air resistance

Author:

Niu Jianxing1,Zheng Yuansheng1ORCID,Newton Md All Amin1ORCID,Xin Binjie1ORCID

Affiliation:

1. School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai, China

Abstract

The coexistence of PM2.5 pollution and the ongoing pandemic poses significant risks to human health. Protective masks incorporating high-efficiency particulate air filters offer adequate protection against PM2.5 particles. Micro/nanofibrous nonwovens, including melt-blown and electrospun nonwovens, are essential filter materials. This study focuses on the filtration mechanism and geometric structure design of multi-level structured micro/nanofibrous nonwovens. A comprehensive investigation was conducted on a filter core material composed of polyacrylonitrile, a polystyrene electrospun membrane, a polypropylene (PP) melt-blown membrane, and a supporting outer layer of a PP spun-bonded membrane. The resulting nonwovens exhibited exceptional filtration efficiency of 99.98% for PM0.3 particles, with a low pressure drop of 60 Pa at 32 L/min inlet air velocity. Filtration efficiencies of 99.99% and 100% were achieved for PM1.0 and PM2.5 particles, respectively. These characteristics make the designed composite nonwovens a very promising filter material for masks. The study contributes to understanding filtration mechanisms and developing advanced high-efficiency filter materials, enhancing protection against airborne pollutants.

Funder

Class III Peak Discipline of Shanghai-Materials Science and Engineering

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3