Investigating mathematical methods for high-throughput prediction of the critical buckling load of non-uniform wool fibers

Author:

Vetharaniam Indrakumar1,Tandon Surinder2,Plowman Jeffrey E2,Harland Duane P2

Affiliation:

1. AgResearch Limited, Ruakura Research Centre, New Zealand

2. AgResearch Limited, Lincoln Research Centre, New Zealand

Abstract

The sensation of prickle from textile garments is directly related to the force that a fiber protruding from the fabric surface can exert on the skin without buckling – its critical buckling load (CBL). Finite element modeling (FEM) has previously been used in the literature to predict CBLs for a set of 25 fibers with different along-fiber morphology. With a view to high-throughput analysis of fibers, we investigated two analytical methods that were potentially faster and less computationally intensive than FEM and applied them to calculate CBLs for the same set of fibers. In addition, we tested a numerical integration and gradient search (NIGS) method that we developed by adapting a previously published, non-FEM, numerical approach. The analytical methods that we tested were either inadequately formulated or prone to instability. Our NIGS method was more reliable that the analytical methods (but slower to compute), and its results appeared more accurate than the published FEM results, based on an inconsistency metric that we developed. The published FEM results and the NIGS predictions agreed within 5% for 60% of the fibers, and within 10% for 72% of the fibers (with differences ranging from 0.4% to 19.1%) and generally showed qualitative agreement on the response of CBL to fiber shape, with some notable exceptions. The response of CBL to dimensional variation was complex. This, and the inconsistency between methods, highlights the need for caution when analyzing complicated biological structures, such as wool, and the value of verifying the reliability of any predictions from any approach.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3