Physical Ageing and Annealing in Fibers and Textile Materials

Author:

Tao X.1,Sukigara S.1,Postle R.1,Dhingra R.C.1

Affiliation:

1. School of Fiber Science and Technology, University of New South Wales, Kensington, NSW, Australia

Abstract

The theory of viscoelasticity in textile assemblies reported in Part I of this series of papers is extended to blended textile materials. The complex effects of ageing or an nealing or both of these on the stress relaxation processes in a blended textile material are separated into several regions according to the demarcation provided by the glass transition temperature of the constituent fibers in the blend. The influence of ageing or annealing processes on the mechanical properties contributed by constituent fibers in the blend can be represented by horizontally shifting the stress relaxation curves of the fibers in the logarithmic time scale. The time shift factors for each individual group of fibers in the blend take into account the changes in temperature and ageing or annealing history. The sufficient condition to obtain a single effective time shift factor for the blend is that all viscoelastic component fibers must have only one identical time shift factor with respect to the same reference state. The theory predicts that, in most real situations, there should be no single time shift factor obtainable for textile blends owing to the differences between the shift factor of the component fibers. The interaction between the fiber components in a blended fabric represents an important aspect of its viscoelastic behavior. An experimental study reveals that the interaction between fiber blend components in wool/polyester fabrics is influenced by the differ ences in the stress relaxation behavior of the blend constituents, blend composition, and fabric weave construction. The study also indicates that the annealing process improves the viscoelastic properties of wool/polyester blended fabrics. Optimum an nealing conditions occur when these fabrics are heated in the vicinity of the glass transition temperaure of wool fibers at the equilibrium moisture regain corresponding to 20°C and 65% RH.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3