Clustering Analysis for Cotton Trash Classification

Author:

Xu B.1,Fang C.1,Watson M.D.2

Affiliation:

1. The University of Texas, Austin, Texas 78712, U.S.A.

2. Cotton Inc., Raleigh, North Carolina 27612, U.S.A.

Abstract

Raw cotton may contain various kinds of trash, such as leaf, bark, and seed coat particles. The content of each of these trash categories is useful information for finding more efficient cleaning processes and predicting the quality of the finished products. This paper addresses the importance of using chromatic and geometric features of trash for trash description, and presents three different clustering methods that automatically classify trash based on the feature measurements. Compared with the geometric attributes of trash, such as size and shape, color attributes are less changeable during harvesting and ginning of cotton and are therefore more reliable and descriptive in categorizing trash. Three clustering methods—sum of squares, fuzzy, and neural network—prove effective for trash classification. Sum of squares clustering and fuzzy clustering require iterative computations and generate comparable classification accuracy. Neural network clustering yields the highest accuracy, but it needs more computational time for network training.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3