An Artificial Neural Network-based Hairiness Prediction Model for Worsted Wool Yarns

Author:

Khan Zulfiqar1,Lim Allan E. K.2,Lijing Wang 2,Xungai Wang 3,Beltran Rafael4

Affiliation:

1. Textile Research and Innovation Centre, Textile Institute of Pakistan, Pakistan

2. Center for Material and Fibre Innovation, Deakin University, Geelong, Victoria 3217, Australia

3. Center for Material and Fibre Innovation, Deakin University, Geelong, Victoria 3217, Australia,

4. School of Fashion and Textiles, RMIT University, Brunswick VIC 3056, Australia

Abstract

This study evaluated the performance of multilayer perceptron (MLP) and multivariate linear regression (MLR) models for predicting the hairiness of worsted-spun wool yarns from various top, yarn and processing parameters. The results indicated that the MLP model predicted yarn hairiness more accurately than the MLR model, and should have wide mill specific applications. On the basis of sensitivity analysis, the factors that affected yarn hairiness significantly included yarn twist, ring size, average fiber length (hauteur), fiber diameter and yarn count, with twist having the greatest impact on yarn hairiness.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3