Preparation of multiple-reactive-site and flexible crosslinking agent with transaconitic acid and acrylic acid and its application for three-dimensional crosslinking of cellulose

Author:

Liang Ting1,Yan Kelu1,Zhao Tao1ORCID,Ji Bolin12ORCID

Affiliation:

1. National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China

2. State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, China

Abstract

A novel multiple-reactive-site crosslinking agent, P(TAA‒AA), was developed from transaconitic acid and acrylic acid in this study. Cotton fabrics with durable wrinkle-resistant properties were obtained by crosslinking with P(TAA‒AA), which benefited from the multifunctional carboxyl groups of crosslinking agents and the three-dimensional crosslinking inside cotton fibers. The wrinkle-resistant properties of P(TAA‒AA)-modified fabrics were evaluated and compared with those of other polycarboxylic acid-treated fabrics, and the P(TAA‒AA)-modified fabrics showed a wrinkle recovery angle of 262° as high as the 1,2,3,4-butanetetracarboxylic acid-modified fabrics while maintaining nearly two-fold higher tearing strength retention (62.9%), and they showed a much higher value of whiteness index than the citric acid-modified fabrics. This demonstrated that the obtained P(TAA‒AA) is an ideal polycarboxylic acid already known to date simultaneously to realize the high wrinkle recovery angle and high tearing strength retention for treated cotton fabrics. The Raman depth mapping images and the scanning electron microscope images of P(TAA‒AA)-modified samples indicated that P(TAA‒AA) molecules can diffuse into the amorphous regions of the cellulose fibers and form crosslinking bridges between cellulose chains. The multiple reactive carboxyl groups in P(TAA‒AA) may form three or more ester bonds between the P(TAA‒AA) molecule and different cellulose chains, which were regarded as the main contribution to the high crosslinking effectiveness of the P(TAA‒AA)-modified fabrics.

Funder

State Key Laboratory of New Textile Materials and Advanced Processing Technologies

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

State Key Laboratory of Bio-Fibers and Eco-Textiles

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3