Automatic Inspection of Fabric Defects Using an Artificial Neural Network Technique

Author:

Tsai I-Shou1,Hu Ming-Chuan1

Affiliation:

1. University, Taichung, Taiwan, Republic of China

Abstract

Artificial neural networks (ANN), with capabilities of fault tolerance and learning, can be used to detect fabric defects. Because the back propagation algorithm, has higher learning accuracy and successful applications, we have used it in this study to identify missing ends, missing picks, oily fabric, and broken fabric, all often found as defects in fabrics. The correct selection of characteristic parameters for the input layer in an ANN plays a great role in the recognition rate. The spatial periodicity of a fabric image can be transferred into spatial frequency by fast Fourier transform owing to the fabric's periodicity. Once a defect occurs in the fabric, its periodicity is changed so that the corresponding intensities at the specific positions of the spectrum obviously change. These intensities can act as characteristic parameters and can be substituted in the ANN for learning. Altogether, nine parameters derived from the spectrum have been selected by the ordinary method, which provides the characteristic parameters without any extra modification, and by the statistical method, which modifies the characteristic parameters with variations between the defective and normal fabrics. Of the two plain fabrics used (with densities of 70 X 60 and 65 X 45), for each fabric, the results show that the total classification rates each above 96%. The total classification rate is 88% with the statistical method while the ordinary method is 24% if only one fabric is selected and the learned mode is applied for a new, unlearned fabric. The statistical method can be used for fabric defect recognition, and any inconvenience caused by various specifications of warp and weft densities can be minimized.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3