Dual-path segmentation network for automatic fabric defect detection

Author:

Yu Zhiqi1ORCID,Xu Yang1ORCID,Wang Yuekun1ORCID,Sheng Xiaowei1,Xie Guosheng1

Affiliation:

1. College of Mechanical Engineering, Donghua University, China

Abstract

Fabric defect detection plays a crucial role in the production process of the textile industry. Vision-based inspection methods have emerged as an inevitable trend due to their lower labor costs and high detection efficiency. As the accuracy requirements for fabric defect detection, methods must not only identify and locate defects accurately but also describe the morphological features of the defects. This poses a challenge for the algorithm’s design, as it must consider both the semantic and texture information of the fabric. In this paper, we propose an end-to-end dual-path segmentation network called DPNet for fabric defect detection, which can extract and fuse both semantic and texture information to achieve high accuracy. The proposed framework consists of two paths: the semantic path, which has narrow but deep layers to obtain high-dimensional features, and the texture path, which has wide and dense layers to extract low-level details. To enhance the interaction between semantic and texture features, a crossed attention fusion module has been developed. Evaluations show that the proposed method outperforms other methods on different datasets in terms of mIoU, with results of 75.84% for Ngan and 70.69% for AITEX. In addition, we developed an inspection platform and tested the proposed method online. We found that it can achieve online detection at a speed of 40 m/min, making it well-suited for practical production environments.

Funder

National Key Research and Development Project

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fabric defect detection algorithm based on improved YOLOv8;Textile Research Journal;2024-07-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3