Active tension control of the conical winding system based on the neural network control algorithm of radial-basis functions

Author:

Zhang Hua12ORCID,Wang Jiangtao13,Wu Jie2,Bian Huoding13,Wei Yikun1ORCID

Affiliation:

1. Faculty of Mechanical Engineering, Zhejiang Sci-Tech University, China

2. Hangzhou Mogong Technology Co., Ltd, China

3. Zhejiang Provincial Key Laboratory of Modern Textile Equipment Technology, Zhejiang Sci-Tech University, China

Abstract

A conical winding formation and tension control system was proposed in the doubling operation based on the yarn guide mode of a single spindle in this study. Conical winding formation realized the radial unwinding of wound package. An overfeed mechanism was introduced to achieve closed-loop control of yarn tension. The overfeed wheel was driven by a brushless Direct Current motor. The tension control system combined a Proportion Integration Differentiation controller with a radial-basis-function neural network, whose purpose was to meet the control requirements of the brushless DC motor. This system consisted of three main steps: Firstly, the radial-basis-function neural network was used to identify the system online. Secondly, the gradient descent method was used to adjust the node weight, center vector, and baseband width. Finally, incremental PID parameters online were adjusted according to the identified Jacobian information. A mathematical model of a control system was established in Matrix Laboratory. An experimental platform was designed for doubling winder to compare the control effects of Radial-basis-function-PID with traditional PID. The simulation results showed that the RBF-PID had a smaller overshoot of yarn tension, shorter adjustment time, and smaller steady-state error compared with the traditional PID controller in doubling operation by simulating the mathematical model. Experimental results showed the RBF-PID controller had good performance and stability and could be applied to yarns with different average linear velocity, yarn counts and strands . The yarn tension fluctuation will not exceed ±3% of the target value when the experimental materials and the cone angles are unchanged.

Funder

National Natural Science Foundation of China

Horizontal subject

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3