Probabilistic model for cattail and canola fibers: effect of environmental conditions, structural parameters, fiber length, and estimators

Author:

Shadhin Md1ORCID,Mann Danny1,Rahman Mashiur1

Affiliation:

1. Department of Biosystems Engineering, University of Manitoba, Winnipeg, Canada

Abstract

Biomass fibers are being widely investigated for industrial applications as an alternative to synthetic fibers using a standard humidity condition. In this study, the mechanical properties of two waste biomass fibers – canola and cattail – have been investigated when subjected to different environmental conditions, fiber length, and type of estimators used during analysis. The effect of different environmental conditions and structural variations were investigated by measuring the tensile properties after exposing them to eight different relative humidity conditions using a fixed fiber length of 25 mm. Further investigation was conducted using fiber lengths of 25, 35 and 45 mm using the most conservative relative humidity condition. The data were analyzed by a Weibull distribution model using four different estimators. The results revealed that Weibull strength ( σavg) and modulus (Eavg) closely followed experimental values for cattail and canola fibers. The different relative humidity conditions and fiber lengths resulted in different Weibull parameters with 11% relative humidity and the mean rank estimator predicted the most conservative tensile strength for both waste biomass fibers. The experimental and characteristic Weibull strength decreased when fiber gauge length increased from 25 to 45 mm. The tensile strength and modulus of both waste biomass fibers at 50% reliability lie within the range of average experimental values. However, these values are reduced to 155 MPa (strength) and 20 GPa (modulus) for cattail fiber at 90% reliability. The survival probability of the tensile strength and modulus were found to be the highest at 75% and 100% relative humidity for cattail and canola fibers, respectively.

Funder

University of Manitoba

Natural Sciences and Engineering Research Council of Canada

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3