The influence of nanostructure on the wetting transition of polyvinylidene fluoride nanoweb: from the petal effect to the lotus effect

Author:

Hong Hyae Rim1ORCID,Park Chung Hee1ORCID

Affiliation:

1. Department of Textiles, Merchandising and Fashion Design, Seoul National University, Republic of Korea

Abstract

In this study, the effects of the surface structure of electrospun polyvinylidene fluoride (PVDF) nanoweb on surface wettability were analyzed. The conditions of the surface structure representing the lotus and petal effects were derived, and the difference in the dynamic behavior of the water droplets on the surfaces was investigated. To this end, a PVDF nanoweb was fabricated by electrospinning various concentrations of PVDF solutions. The nanoscale roughness was adjusted by varying the CF4 plasma etching time. It was seen that when the concentration of the electrospun PVDF solution was 15 or 20 wt%, a hierarchical structure of microbeads and nanofibers was formed. In the 20 wt% nanoweb, droplets formed an apparent contact angle of 149.5 ± 2.2°, and the petal effect was observed in which the droplets were pinned on the surface and did not roll off even when the nanoweb was tilted by 180°. As a result of introducing fine nanostructures with CF4 plasma etching on the 20 wt% nanoweb, the apparent contact angle increased to 162.8–164.4°, and the shedding angle decreased to 5.3–8.1°, showing a wetting transition to the lotus effect, regardless of the plasma etching time. In addition, the lotus effect was observed when 15 wt% nanoweb was treated with CF4 plasma etching for more than 10 min. We confirmed that the lotus effect was exhibited when the three-phase contact line of the PVDF nanoweb/water/air was discontinuous, and the contact area between the surface and the water droplets was reduced with increased air pockets at this interface, which led to a decrease in the adhesive force and the impact of negative pressure.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3