Recycling polypropylene from non-woven disposable masks in developing a three-dimensional printing filament

Author:

Zhang Meng1,Sun Sarina2,Liu Jun1ORCID,Sun Jianzhong1ORCID

Affiliation:

1. Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, China

2. School of Fashion and Textiles, The Hong Kong Polytechnic University, China

Abstract

Non-woven disposable masks play a unique role in reducing the COVID-19 pandemic threat in transmission between people, but the huge amount of disposable non-woven masks generated every day are currently posing a serious challenge to our environment on a global-wide scale. In line with this emerging problem, a series of recycling processes were designed and conducted to evaluate the performance of material recovered from those waste masks for potential use in three-dimensional (3D) printing. A composite filament from recycled polypropylene (rPP) and an additive material, glass fiber (GF), was fabricated by melt-blending processing followed by single-screw extrusion. A variety of material properties, including the chemical/mechanical/microstructure property, thermal stability, printability, rheology performance, and geometrical accuracy toward GF/rPP composite filaments, were comprehensively analyzed. Our results demonstrated that two important mechanical properties, the compression strength and the tensile strength, to a 3D printed object by fused deposition modeling (FDM) from the GF/rPP composite were significantly higher than that of a FDM 3D printed object from GF/polypropylene composites. The specific warpage parameter ( Wsp) and the surface roughness ( Sa) for a 3D printed object from the GF/rPP composite at 30 wt% GF additive would have printing accuracy of 0.54% ± 0.0014 and 21.1 ± 0.76 µm, respectively, and no clogging phenomenon was observed in the printer nozzle channel during the printing processing, suggested that this recycling method for a large number of non-woven waste masks was potentially applicable in serving as a FDM 3D printing material.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3