The carbon fiber/epoxy composites toughened by fire-resistant glass fiber veils: Flammability and mechanical performance

Author:

Nie Lei12,Li Jiawei12ORCID,Yan Xiaofei12,Zhu Chenkai3ORCID,Yang Xiaoming4,Li Yaobang4,Qi Dongming12

Affiliation:

1. Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing and Finishing, Zhejiang Sci-Tech University, China

2. Zhejiang Provincial Innovation Center of Advanced Textile Technology, China

3. Ningbo Institute of Technology, Beihang University, China

4. Research and Development Department, Zhejiang Fulai New Material Co. Ltd., China

Abstract

The fire-retardant properties of high-performance fiber-reinforced composites are the crucial benchmark for composite structure stability. However, in the current flame-retardant solution for composites it is difficult to reach the balance between fire resistance and structural performance due to the deteriorating composite interface. In this work, the carbon fiber-reinforced composite was covered with functional glass fiber layers, in which the glass fiber veil had been treated with flame-retardant agents and silicone-modified waterborne polyurethane, in order to be endowed with flame-retardant capability and structure toughness. As such, a significant improvement in the flame retardancy and mechanical structure of the composites could be observed. When compared with the control, the total heat release and total smoke release for composites with 8% silicone-modified waterborne polyurethane treatment could be decreased by 18.5% and 18.1%, while the tensile and flexural strength were significantly increased by 47.3% and 62.2%, respectively. This well-balanced performance is attributable to the structure design with a toughened glass fiber veil to protect the composite surfaces from fire combustion and structure failure. Therefore, this flame-retardant structure design provides a new strategy to achieve high-performance composites with prospective applications for aircraft and aerospace.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3