Producing light-weight bast fibers from canola biomass for technical textiles

Author:

Shuvo Ikra Iftekhar1ORCID,Rahman Mashiur2,Vahora Tasneem1,Morrison Jason2,DuCharme Shawna1,Choo-Smith Lin-P’ing1

Affiliation:

1. Composites Innovation Centre, University of Manitoba, Winnipeg, Canada

2. Department of Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba

Abstract

Due to the excessive use of water required for cotton cultivation, scientists in this field have been looking at waste biomass as an alternative source of fiber supply. Canola waste biomass is a source of textile fibers which effectively costs nothing, as the biomass can be collected from the waste plant stems of canola plants after harvesting. Therefore, an investigation has been conducted to identify the characteristics of canola fiber and of the canola cultivar ( Brassica napus L.) suitable for textile applications. In this research, a bio-inspired approach was applied to produce fiber from canola biomass by water retting of four different cultivars (HYHEAR 1, Topas, 5440, and 45H29) cultivated in a greenhouse under controlled atmospheric conditions. It was found that the structural hierarchy of fiber density, mechanical properties and other textile fiber properties of canola fiber differ from cultivar to cultivar, which can be carefully harnessed for different applications. Further, it was found that the density of canola fiber is much lower than that of cotton and other competitive bast fibers, owing to its hollow structure, as revealed by scanning electron microscopy. The results suggest that canola may be an excellent choice for manufacturing of non-woven fabrics, eco-composites, apparel or other technical textiles.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Reference25 articles.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3