Study on the model of semi-open-end twist in compact spinning with lattice apron

Author:

Fu Ting1,Zhang Yuze1,Akankwasa Nicholus Tayari1ORCID,Chen Nanliang1,Lin Huiting2ORCID

Affiliation:

1. College of Textiles, Donghua University, Shanghai. China

2. College of Textiles and Apparel, Quanzhou Normal University, Quanzhou, China

Abstract

The twist mechanism of the fiber strand in the condensing zone in compact spinning is complex. This paper proposes a dynamic model to evaluate the additional twist of the fiber strands. Based on the flow simulation in the condensing zone, the fiber trajectory in the suction slot was simulated and obtained. Several spinning parameters such as suction slot angle, suction slot width, negative pressure, and shape of suction slot, were varied to show their effects on the additional twist. The simulation results indicated that by increasing the suction slot angle from 5° to 10° the additional twist increased significantly. Higher negative pressure also leads to an increase in the additional twist. The suction slot width has a greater effect on the fiber trajectory than on the additional twist. An arc-shape suction slot increased the additional twist compared with a linear-shape one. An experimental test conducted revealed a precise agreement with the simulation results.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3