Emulsion electrospun polylactic acid/Apocynum venetum nanocellulose nanofiber membranes with controlled sea buckthorn extract release as a drug delivery system

Author:

Wang Lu12ORCID,Wang Chenmeizi1,Wang Ling1,Zhang Qingle1ORCID,Wang Ying1,Xia Xin12

Affiliation:

1. College of Textile and Clothing, Xin Jiang University, China

2. Key Laboratory of Textile Science & Technology (Donghua University), Ministry of Education, China

Abstract

Prolonging the duration of drug action and reducing toxicity play a vital role in wound administration as they reduce the chance of infection and decrease complications and cost. This study reports the natural antioxidant procyanidins extracted from sea buckthorn (SBT) and laboratory-manufactured Apocynum venetum cellulose nanofiber as core drugs. The sustained-release nanofiber membrane was prepared by electrospinning on polylactic acid/polyvinyl pyrrolidone nanofibers. High-performance liquid chromatography-mass spectrometry was used to identify the phenolic compounds in SBT extracts and confirmed the presence of procyanidins with a content of 0.0345 mg/g. The nanofiber membrane was characterized through transmission electron microscopy, encapsulation efficiency, in vitro drug-release study and antioxidant assay. The results indicated that the extracted procyanidins were successfully encapsulated in the core–sheath structure nanofibers, and the encapsulation efficiency of nanofiber membranes reached 83.84%. In vitro measurements of the delivery showed this core–sheath structure could significantly alleviate the drug burst release, which is followed by a linear and smooth release within 30 hours. Further tests showed that the removal efficiency of 2,2-diphenyl-1-picrylhydrazyl reached 88.62%, indicating that the membranes had high antioxidant activity. This work implies that the combination of Apocynum venetum nanocellulose and emulsion electrospun fibers has promising potential applications in tissue engineering or drug delivery.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3