The prediction of loss tangent of sewed multilayer fabric

Author:

Zhang Yaya1ORCID,Hu Jiyong12,Yan Xiong1,Tu Huating1ORCID

Affiliation:

1. Key Laboratory of Textile Science &Technology, Ministry of Education, Donghua University, China

2. Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University, China

Abstract

The thickness and dielectric properties (dielectric constant and loss tangent) of fabric substrate play a key role in the design and properties of wearable antennas. Related research shows that a thicker substrate with a low dielectric constant and high loss tangent can enhance the bandwidth of antennas. Here, sewing multiple fabrics together was a good way to increase the thickness while maintaining flexibility, but it is hard to control the dielectric properties because of the lack of the relationship between the dielectric properties and that of the components. Although previous works have established the equivalent capacitance model of sewed multilayer fabric, they cannot obtain its dielectric properties completely. In this work, based on the circuit model proposed by Chin and Lee, the equivalent capacitance and resistance models of sewed multilayer fabric were established to predict its loss tangent. The sewed multilayer fabrics were fabricated and measured by split post dielectric resonator at 1.11 GHz to validate the model. From the comparison of the predicted and measured loss tangents of sewed multilayer fabrics, it was found that the predicted loss tangents agreed well with the experimental results. It is believed that the proposed model is beneficial to the rapid and rational configuration of the components for multilayer fabric according to thickness and dielectric properties of the components, and will provide a theoretical basis for the design of multilayer flexible electronic substrate.

Funder

Natural Science Foundation of Shanghai

Fundamental Research Funds for the Central

Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3