Visualization of a pillar-shaped fiber bundle in a model needle-punched nonwoven fabric using X-ray micro-computed tomography

Author:

Ishikawa Tatsuya1,Kim KyoungHou1,Ohkoshi Yutaka12

Affiliation:

1. Faculty of Textile Science and Technology, Shinshu University, Japan

2. Division of Frontier Fibers, Institute for Fiber Engineering, Shinshu University, Japan

Abstract

In the needle-punching process, the barbs of a needle catch fibers and orient them along the thickness direction of the fabric. The oriented fibers form a pillar-shaped fiber bundle, which acts as a bonding point of the fabric. The structure of the pillar-shaped fiber bundle thus governs the mechanical properties of needle-punched nonwoven fabric, and both are largely affected by the needle-punching conditions. However, the three-dimensional structure of pillar-shaped fiber bundles and their development under different needle-punching conditions have not been revealed. In the present study, we visualized the three-dimensional structure of a pillar-shaped fiber bundle in needle-punched nonwoven fabric, employing X-ray micro-computed tomography (XCT) on the basis of the difference in the X-ray absorption coefficient between polyethylene terephthalate (PET) and polyethylene fibers. For a material density ratio of less than 1.4 and PET fibers having a diameter of 40 µm, the pillar-shaped bundles of PET fibers were visualized by erasing 20-µm polyethylene fibers in XCT images. Furthermore, we investigated the effects of the penetration depth of the needle on the development of pillar-shaped fiber bundles. The number of fibers constituting a pillar largely increased at a penetration depth of 19.0 mm, and pillars protruded from the bottom surface of the fabric and formed a stitch structure. The XCT applied in this study is thus effective in analyzing the structure of pillar-shaped fiber bundles quantitatively without affecting the structure of the nonwoven fabric.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3