Development of yarns from recycled carbon fiber based on friction spinning technology with specific properties for thermoset composites

Author:

Abdkader Anwar1,Bachor Samuel1,Hasan Mir Mohammad Badrul1ORCID,Cherif Chokri1

Affiliation:

1. Institute of Textile Machinery and High Performance Material Technology (ITM), Technische Universität Dresden, Germany

Abstract

Because of a growing demand and usage of carbon fiber, effective methods to re-use waste and recycled carbon fiber recoverable either from process scraps or from end-of-life components are attracting increased attention. The development of different hybrid yarn structures consisting of recycled carbon fiber and thermoplastic fibers (recycled carbon fiber content approx. 50% by weight) for thermoplastic composites have been reported earlier. Yarns with high recycled carbon fiber content (>90% by weight) required for thermoset composites are still not realizable due to high shortening in recycled carbon fiber length (≥70%) during different processing steps of spinning. The reason lies in low shear strength, smooth fiber surface and high brittleness of recycled carbon fiber. Second, a lack of crimp in recycled carbon fiber leads to drafting errors during the drawing and spinning process. In this paper, the spinning limit regarding the core to sheath ratio of noble yarns with a recycled carbon fiber content greater than 90% by weight based on friction spinning technology for thermoset composites is reported. Slivers of recycled carbon fiber solely required for the development of yarns are produced on carding and drawing machines optimized for the gentle processing of recycled carbon fiber. Furthermore, different spinning parameters such as spinning drum speed and suction air pressure are investigated and their effect on tensile properties of yarn is analyzed. The results show that yarns with high recycled carbon fiber content (>90% by weight) can be produced with reproducible quality on the DREF-3000 friction spinning machine.

Funder

Deutsche Forschungsgemeinschaft

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3