Development of non-fluorine superhydrophobic textiles using polypropylene resins

Author:

Kim Jung Yoon1ORCID,Yun Changsang2ORCID,Park Chung Hee13

Affiliation:

1. Department of Textiles, Merchandising and Fashion Design, Seoul National University, Republic of Korea

2. Department of Fashion Industry, Ewha Womans University, Republic of Korea

3. Research Institute of Human Ecology, Seoul National University, Republic of Korea

Abstract

This study aims to develop environment-friendly superhydrophobic textiles forming nanoparticles of polypropylene that have intrinsically low surface energy, and thus achieving the requirements for superhydrophobicity, such as hierarchical roughness and low surface energy at once. This work mainly studies the influences of tacticity (isotactic, atactic), concentration (10, 20, 30 and 40 mg/ml), drying temperature (30℃ and 70℃) and the mixing ratio of the solvent/non-solvent (9:1, 8:2, 7:3 and 6:4) on the coating morphology and wettability. In the case of isotactic polypropylene, the optimal condition showing the water contact angle of 173° and the water shedding angle of 4° was at 70℃ drying temperature, 30 mg/ml concentration and 6:4 solvent/non-solvent mixing ratio. Amorphous polypropylene showed the water contact angle of 163° and the water shedding angle of 9° at the condition of 30℃ drying temperature, 40 mg/ml concentration and 8:2 solvent/non-solvent mixing ratio. It was revealed that superhydrophobicity by amorphous polypropylene was exhibited at lower drying temperature and lower mixing ratio for the non-solvent. This is attributed to the different evaporation temperature or speed of the solvent/non-solvent mixing according to the tacticity of polypropylene. This study demonstrated that environmental-friendliness was improved in that superhydrophobic textiles were developed without fluorine compounds, maintaining vapor permeability. This study also developed a finishing method using amorphous polypropylene under a mild condition in terms of drying temperature and solvent toxicity, which is expected to be applicable not only to polyester but also to various fabrics.

Funder

National Research Foundation of Korea (NRF) and the Ministry of Science and ICT of the Korea government

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3